

Control Award Content Sheet

Team # 9789 Team Name: TOXIC

Autonomous Objectives

Overview - Our team has designed and implemented a total of 8 unique and highly reliable autonomous
programs and strategies, each configured to maximize scoring in any given scenario in the match
setting. This autonomous flexibility has yielded efficient scoring when paired with robots that present
different strengths. In this content sheet, we will thoroughly highlight each of the sensors that we use,
along with the performance goals and objectives associated with our most advanced 100 point program.

Performance Goals - Score 2 Particles into the Center Vortex (30 points), claim both Beacons (60
points), partial park on the Center Vortex Base (5 points), and knock the Cap Ball onto the Playing Field
(5 points), totalling to 100 points.

Chronological Objective Routine

1.) Utilizing encoder technology, drive straight and stop at the point in which the robot shoots both

Particles into the Center Vortex.
2.) Swiftly turn to the appropriate angle for shooting, measuring encoder counts, and then call forth our

gyro sensor algorithm to ensure that this optimal alignment is accurate.
3.) Shoot both Particles into the Center Vortex, harnessing encoder capabilities to control the shot cycle.
4.) Exploiting the function of our encoder algorithm, drive toward our respective alliance’s wall.
5.) Turn parallel with the white tape in front of the first beacon, using the motor encoders, then employ the

output of the gyro sensor as a safety check to ensure that the robot heading is parallel with the wall.
6.) Square up on the white tape in front of the beacon using both color sensors embedded in the

drivetrain, approaching such with our innovative square up algorithm and PID implementation.
7.) Drive toward the beacon using the optical distance sensors that command the execution of an

inequality driven while statement, in which we approach the beacon until we are a set distance away.
8.) Utilize a color sensor to correctly read the value emitted by the beacon, which sets a boolean value in

our color analysis algorithm, which determines the position of the servo to trigger the buttons.
9.) Return the robot to a heading that is parallel with the perimeter wall by executing our efficient gyro

sensor control algorithm.
10.) Drive straight and approach the next beacon while integrating the heading value of the gyro sensor

as a variable input to output a speed value with each of the motors to maintain a straight path.
11.) Repeat steps 6-8 in an effort to claim the second Beacon in a highly reliable manner.
12.) Pivot, drive, and park on the Center Vortex Base while knocking off the Cap Ball using the motor

encoder function.

Particle Prevent Mechanism - One of the most innovative aspects of our autonomous mode is the
modular servo sub-assembly that we have integrated into the chassis of our robot that extends a Lexan
form outward. We use this in conjunction with the gyro sensor as the robot traverses alongside the wall,
preventing particles from affecting the functionality of our robot when triggering the beacons.

- Control Award | 9789 TOXIC -

Control Award Content Sheet

Sensors Used

Overview - We have a total of 7 sensors on our robot, each used to enhance the reliability of each of our
autonomous programs. By incorporating the logical and efficient function of their associated Java
algorithms that we have designed throughout the code, we have been able to produce autonomous
routines that are highly consistent, logically using some of the most effective sensor based methods we
created to optimize point output. This allowed us to build a high scoring and fluid approach to the game.

Gyro Sensor - We use the gyro sensor to control and ensure the accurate turning of the robot by
computing and analyzing the degree heading in which it is facing. We have integrated many gyro derived
functions in our code that are used for several different scenarios, including inequality based turns in
which the motors move until we reach a certain point, and also where the robot maintains a perfectly
straight heading no matter the starting angle where this function initiates. Designing and implementing an
efficient alignment method in many spots throughout the code has acted as another layer of security, with
this “software insurance” serving as a vital aspect to our high level of consistency after encoder methods.

4 Color Sensors - Our team has two color sensors that are used to read the value emitted by the
beacon, one for each alliance. We have another two color sensors that are in perfect alignment with one
another on the underside of the chassis. These square up on the white tape so that we approach the
beacon straight on, increasing our factor of reliability in triggering the correct color.

2 Optical Distance Sensors - Implementing two distance sensors on our robot has also served as an
integral component in our consistent autonomous programs. These distance sensors are used to drive
toward the beacon until it is a certain amount of centimeters away. This contributes to the reliability of our
programs, as our robot will be ‘intelligent’ enough to track the location of the beacon, even if the walls
have been moved during match play or other slight field variations come into consideration.

Motor Encoders - The encoders that we have integrated with 7 of the 8 motors on our robot have both
autonomous and driver controlled applications. Each motor on the robot has cable linkage, which allows
us to track the position of the motors in autonomous, guiding the starting and stopping points for many of
the movements that the robot takes. Additionally, during Teleop, we are able to make the gearbox motors
for our linear lift synchronous with one another by taking advantage of the on-board PID function.
Throughout the entirety of the match, we strive to maximize the functionality of the encoders by
transferring the voltage readings from the battery into a direct speed quantity for the motors, instead of a
power value. What this does is prevents differences in motor velocity based on battery power.
Additionally, our team analyzes encoder feedback to help troubleshoot and problem solve through our
logical telemetry output and evaluation process.

- Control Award | 9789 TOXIC -

Control Award Content Sheet

Key Algorithms

Overview - Designing and programming several creative and efficient algorithms, based on the
assortment of sensors that our robot is equipped with, has contributed to our team constructing an
innovative autonomous program that works in a highly reliable manner. Below, we will highlight our most
advanced and well developed software techniques and algorithms, with references to the context of these
methods in Java, found within our pasted code entry. Everything done with our programming is thoroughly
commented and annotated for logic clarity and personal troubleshooting purposes.

[Refer to the ‘LineSquare()’ method in our Java code.]
Dual Color Sensor Square Up Algorithm - Our team has implemented this square up method into our
code which is used to square up on the white tape so that we can approach the beacon while being in
direct alignment with the buttons, which contributes to the reliable success of triggering the correct color.
The threshold in which the sensor takes a reading of the white line is the value that is responsible for the
command of this while loop inequality statement. This loop will continue executing until both sensors have
read the line, with each side of the drivetrain associated with the sensors incorporated into the underside
of the chassis on the robot. The unique part about this function is that either sensor may read the white
line first, allowing for a slight amount of variance when approaching the white, improving consistency.

[Refer to the ‘ GyroAlign()’ method in our Java code.]
Gyro Alignment Algorithm - The majority of our gyro sensors functions are within a constant loop that
reviews event-driven boolean variables constantly, with equality and inequality based conditions that
associate with the power of the motors on the drivetrain. No matter the direction in which the robot is
facing, a function will be called to return the robot to a heading within the threshold that we have declared.
These specific quantities are visible in the parameters for the while loop that our team has set forth.

[Refer to the ‘LongMovementStraight()’ & ‘LongMovementStraightGyro()’ method in our Java code.]
Gyro Algorithm for Maintaining Trajectory - In this algorithm, we have programmed the robot to drive
in a straight path based on the values yielded by our Modern Robotics Integrated Gyro Sensor. If the
heading of this sensor value is less than our desired angle, then the right motors on the drivetrain are
running at a higher velocity to compensate for this drift. Rather, if the sensor value is greater than our
desired angle, then the left motors on the drivetrain run at a higher speed. Integrating this intelligent
control into the functionality of our robot contributes to more consistent results in the match setting, as our
robot will move in a perfectly straight path between both beacons, regardless of minor external factors.

[Refer to the ‘StoreColorValue()’ & ‘ EngageBeacon()’ method in Java.]
Color Analysis Algorithm - In order to trigger the correct button on the beacons, we have a color sensor
that directs the accomplishment of an ‘if then’ statement based on the values that the beacon emits. If the
hue that the sensor reads is of the red threshold, then the server initiates the opposing side of our trigger
mechanism, which activates the blue button. Likewise, the vice versa occurs if the former scenario is
detected, but in reverse. This is accomplished through the usage of several different boolean variables
applied to inequality logic. Staying simplistic with the usage of one color sensor for each side of the robot
has directly correlated to a more efficient and “simple” program for the robot to execute in this high point
density component of the game, a logical approach to this challenge.

- Control Award | 9789 TOXIC -

Control Award Content Sheet

[Refer to the ‘DriveTowardBeacon()’ method in Java.]
Optical Distance Sensor Algorithm - This software process functions based on the drive system
traversing sideways toward the beacon until a certain distance value is picked up from this sensor. Fitting
this command into the while loop has ensured that our robot will be at the optimum distance away for both
evaluating the color of the beacons, along with triggering such based on that corresponding decision.

[Refer to the ‘FirstMovementStraight() ’ method in Java.]
Motor Encoder Algorithms - In each movement for autonomous that does not directly rely on the
information received from one of the core device sensors, we use encoders for position tracking. These
function based on resetting the mode of the motors and calibrating this hardware, while then proceeding
to set the position and run to achieve this target at a set power that we declare. Additionally, we have
integrated a series of inequality statements to ensure that all motors stop when at least one reaches its
target position that is set with a tolerance threshold, preventing motor stalling or twitching. Using
encoders whenever possible has made our robot “smarter”, along with being better equipped to
understand some drive tendencies and other features utilizing telemetry feedback data.

Driver Controlled Enhancements

Innovative Arcade & Mecanum Drive - We have produced code to complement the innovative
functionality of our mecanum based drivetrain. Since this is not a traditional tank drive system, it took a
creative mindset and a detailed planning process to create the most efficient control possible. In order to
maximize the maneuverable nature provided by the mecanum wheels, our team developed variables that
are associated with each of the set axes on the joystick. Then, we add each of the axes’ vectors together
to create an ability to move in any direction at any angle, with the values of these floats, based on the
plane of the joystick, being what we then set the power to on each motor. Additionally, we have enabled
the on-board PID function of each motor by taking advantage of encoder technology, converting a power
percentage to a fraction of speed, making driving more efficient and consistent for the driver.

Linear Lift | Motor Synchronization - Paralleling to what we were able to implement into the code for
the drivetrain, the linear lift has two motors that we were able to make synchronous with one another by
using encoders to enhance the overall functionality of the robot. In order to yield the best performance by
doubling the total stall torque output of the gearbox, these need to be rotating at the same velocity, and
using encoders and software practices lets us achieve such as we practice sound design principles.

Logical & Efficient Gamepad Layout / Telemetry - We have strategically mapped out and placed the
controls for each of the sub-assemblies on our robot between the two gamepads so that we can
maximize driver efficiency and synergy. Our driver controlled code includes clauses that gives our
mechanisms actions based on our controller input using ‘if then’ statements and ‘else if’ extensions,
maximizing the functionality of our robot. Keeping driving intuitive and relatively simplistic has been an
integral part for us in continuing to refine and perfect our abilities as drivers. Additionally, we have
incorporated telemetry feedback in key areas within the code so that we can problem solve through any
potential concerns in a tactical manner, following the software design and development process with a
professional integrity. Sensors that we evaluate through this control method include each of the color
sensors, distance sensors, the gyro sensors, and the encoder counts associated with the gearbox.

- Control Award | 9789 TOXIC -

Control Award Content Sheet

Drivetrain | End Game Speed Shift - Another driver controlled enhancement that we have implemented
is for when our robot has possession of the Cap Ball. When trying to maneuver our robot around the field
with the ball in the air when the lift is in its extended position, we must slow down so that we do not lose
possession of such. This allows use to make more precise movements on the field, something that
serves as a huge advantage when attempting to maneuver around other robots. We have accomplished
this in programming by creating an ‘if then’ statement where if the right trigger is held down and returning
a value of true, then all movements with the drivetrain are scaled down to a value of 20%. This has greatly
increased our consistency in placing the ball on the center vortex during this period of the competition.
Then, once we need to speed up again and claim beacons before the match is over after we cap, our
team will have time to accomplish such. Taking advantage of this unique, strategy based approach in
developing our software helped contribute to our team capping the ball a high percentage of the time.

Engineering Notebook References

Overview - One of our team’s most prideful values is the importance of highly detailed, thorough, and
organized documentation. As a result, we have developed a programming section to thoughtfully log the
design and development of the control of our robot. Below, we will provide linkages to some of our most
significant entries that showcases the evolution of the software that we have created.

Feature & Entry Notebook
Page

Programming Section Highlights Section D

Entry 06 | FIRST World Championship - Programming Overview *[Pasted Code]* D33

Entry 01 | Mecanum Drive Code Production D1

Entry 02 | Finalized Mecanum Drive Code D7

Entry 03 | Drivetrain Code Edit & Encoder Count Control Test D11

Entry 04 | Initial Color Beacon Code Development D19

Entry 05 | Dual Color Sensor Square Up - Control Design & Implementation D23

Preseason Section Highlights Section A

Entry 30 | Encoder Troubleshooting & Color Sensor Introduction A227

Entry 31 | Color Sensor Troubleshooting & State Machine Introduction A237

Engineering Section Highlight Section B

Entry 53 | Autonomous Improvements & Particle Prevent Mechanism - Optimization B485

- Control Award | 9789 TOXIC -

Control Award Content Sheet

Autonomous Program Diagrams

Diagram Parallelism to Autonomous Objectives

1) Utilizing encoder technology, drive straight and stop at
the point in which the robot shoots both
Particles into the Center Vortex.
2.) Swiftly turn to the appropriate angle for shooting,
measuring encoder counts, and then call forth our gyro
sensor algorithm to ensure that this optimal alignment is
accurate.
3.) Shoot both Particles into the Center Vortex, harnessing
encoder capabilities to control the shot cycle.
4.) Exploiting the function of our encoder algorithm, drive
toward our respective alliance’s wall.
5.) Turn parallel with the white tape in front of the first
beacon, using the motor encoders, then employ the output
of the gyro sensor as a safety check to ensure that the
robot heading is parallel with the wall.
6.) Square up on the white tape in front of the beacon using
both color sensors embedded in the drivetrain,
approaching such with our innovative square up algorithm
and PID implementation.
7.) Drive toward the beacon using the optical distance
sensors that command the execution of an inequality driven
while statement, in which we approach the beacon until we
are a set distance away.
8.) Utilize a color sensor to correctly read the value emitted
by the beacon, which sets a boolean value in our color
analysis algorithm, which determines the position of the
servo to trigger the buttons.
9.) Return the robot to a heading that is parallel with the
perimeter wall by executing our efficient gyro sensor control
algorithm.
10.) Drive straight and approach the next beacon while
integrating the heading value of the gyro sensor as a
variable input to output a speed value with each of the
motors to maintain a straight path.
11.) Repeat steps 6-8 in an effort to claim the second
Beacon in a highly reliable manner.
12.) Pivot, drive, and park on the Center Vortex Base while
knocking off the Cap Ball using the motor encoder function.

Our blue autonomous is depicted in the
image above in this program diagram.
The red alliance has the same coding
functions, with it’s path simply being a

mirror image of that being currently
illustrated in this pathing diagram.

- Control Award | 9789 TOXIC -

Control Award Content Sheet

Beacon + Ramp | Autonomous Variation Complement + Ramp | Autonomous Variation

Complement + Center Autonomous Variation

- Control Award | 9789 TOXIC -

Control Award Content Sheet

Additional Summary Information

In conclusion, creating a reliable set of autonomous operations this season has been a goal of
ours that we felt was necessary for efficient and consistent success in the match setting. This year, we
have integrated a total of 7 sensors in order to enhance the intelligence of our robot to accomplish tasks
in the game challenge. To maximize the full use of this hardware, we have integrated many innovative
algorithms, in both the autonomous and teleoperated periods of competition, so that we can achieve
efficient success in this challenge. Lastly, coming up with many innovative strategies and making this
work with our code, both in terms of our many variations of programs, along with our unique teleop goals
and tasks, has optimized our scoring in both major periods of the competition. We hope that this
application guides you to the places in our programming where we highlight the places in which software
improves our mechanical systems. If you have any questions, please feel free to visit us in the pit, and
also refer to our extensive documentation of the software side of our robot, in both the programming and
preseason sections of our engineering notebook.

- Control Award | 9789 TOXIC -

